Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; : 172743, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38679083

ABSTRACT

Accurately identifying the authentic local aerosol types is one of the fundamental tasks in studying aerosol radiative effects and model assessment. In this paper, improvements were made to the traditional Gaussian Mixture Model, leading to the following results: 1) This study introduces several improvements to the traditional Gaussian Mixture Model (GMM), referred to as M-GMMs. These improvements include the incorporation of multivariate kurtosis coefficients, Mahalanobis distance instead of Euclidean distance, and weights of variables. The M-GMMs overcome the issues related to dimensional units and correlations among multiple parameters, thereby enhancing the estimation of the covariance matrix. 2) The proposed M-GMMs model was evaluated for its clustering performance using machine-generated data with known classifications and real iris flower data. The results demonstrated that the classification performance of M-GMMs was superior to other models. Furthermore, compared to the slightly less effective K-means algorithm (which requires manual definition of the number of aerosol types), the M-GMMs model was able to automatically iterate and produce consistent classification results based on similar characteristics. 3) There is still a significant disparity between the characteristics of real stations and typical aerosols. Directly evaluating local aerosols using the characteristics of typical aerosols results in substantial errors. However, the M-GMMs model can effectively reflect the authentic aerosol characteristics at the local level. 4) The M-GMMs model was utilized to perform cluster analysis on the Xuzhou and Nanjing stations of AERONET. This analysis yielded quantitative proportions, temporal distribution characteristics, and spectral distribution features of aerosol types in the two regions. The improved M-GMMs model presented in this paper enables more accurate and continuous characterization of aerosol type variations. Its findings hold significant theoretical and practical value in reassessing aerosol radiative effects.

2.
Huan Jing Ke Xue ; 44(11): 5879-5888, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973073

ABSTRACT

This study applied a de-weather method based on a machine learning technique to quantify the contribution of meteorology and emission changes to air quality from 2015 to 2021 in four cities in the Yangtze River Delta Region. The results showed that the significant reductions in PM2.5, NO2, and SO2 emissions(57.2%-68.2%, 80.7%-94.6%, and 81.6%-96.1%, respectively) offset the adverse effects of meteorological conditions, resulting in lower pollutant concentrations. The meteorological contribution of maximum daily 8-h average O3(MDA8_O3) showed a stronger effect than that of others(23.5%-42.1%), and meteorological factors promoted the increase in MDA8_O3 concentrations(4.7%); however, emission changes overall resulted in a decrease in MDA8_O3 concentrations(-3.2%). NO2 and MDA8_O3 decreased more rapidly from 2019 to 2021, mainly because the emissions played a stronger role in reducing pollutant concentrations than from 2015 to 2018. However, emissions changes had weaker reduction effects on PM2.5 and SO2 from 2019 to 2021 than from 2015 to 2018. De-weather methods could effectively seperate the effects of meteorology and emission changes on pollutant trends, which helps to evaluate the real effects of emission control policies on pollutant concentrations.

3.
Environ Pollut ; 337: 122535, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37696329

ABSTRACT

Aerosol optical properties were studied over Chisinau in Moldova, one of the longest running AERONET sites in Eastern Europe. During two decades (September 1999-November 2018), the mean aerosol optical depth (AOD) and Angstrom exponent (AE) were observed as 0.21 ± 0.13 and 1.49 ± 0.29, respectively. The highest AOD (0.24 ± 0.13) and AE (1.60 ± 0.26) were observed during the summer. More than half (∼55%) of the share was occupied by clean continental aerosols with seasonal order of winter (74.8%) > autumn (62%) > spring (48.9%) > summer (44.8%) followed by mixed aerosols with a respective contribution of 30.7% (summer), 28.4% (spring), 22.5 (autumn) and 16.4% (winter). A clear dominance of volume size distribution in the fine mode indicated the stronger influence of anthropogenic activities resulting in fine aerosol load in the atmosphere. The peak in the fine mode was centered at 0.15 µm, whereas that of the coarse mode was centered either at 3.86 µm (summer and autumn) or 5.06 µm (spring and winter). 'Extreme' aerosol events were observed during 21 days with a mean AOD (AE) of 0.99 ± 0.32 (1.43 ± 0.43), whereas 'strong' events were observed during 123 days with a mean AOD (AE) of 0.57 ± 0.07 (1.44 ± 0.40), mainly influenced by anthropogenic aerosols (during 19 and 101 days of each event type) from urban/industrial and biomass burning indicated by high AE and fine mode fraction. During the whole period (excluding events days), the fine and coarse mode peaks were observed at the radius of 0.15 and 5.06 µm, which in the case of extreme (strong) events were at 0.19 (0.15) and 3.86 (2.24) µm respectively. The fine mode volume concentration was 4.78 and 3.32 times higher, whereas the coarse mode volume concentration was higher by a factor of 1.98 and 2.27 during extreme and strong events compared to the whole period.


Subject(s)
Air Pollutants , Remote Sensing Technology , Moldova , Environmental Monitoring/methods , Europe, Eastern , Aerosols/analysis , Air Pollutants/analysis
4.
Huan Jing Ke Xue ; 44(7): 3779-3787, 2023 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-37438277

ABSTRACT

Based on the observation data of volatile organic compounds (VOCs) in the industrial area of Shenyang during the summer of 2019 and 2020, the composition characteristics and sources of VOCs were preliminarily studied. The ozone formation potential (OFP) and aerosol formation potential (AFP) of VOCs were also estimated using the max incremental reactivity (MIR) and aerosol formation coefficient (FAC) methods, respectively. The results showed that the average concentration of VOCs was 41.66 µg·m-3, and the proportions of alkanes, olefins, aromatics, and acetylene were 48.50%, 14.08%, 15.37%, and 22.05%, respectively. The top ten species of VOCs were primarily C2-C5 alkanes, also including acetylene, ethylene, and some aromatics, accounting for 69.25% of the total VOCs. VOCs showed obvious diurnal variation characteristics with a high concentration in the morning and evening (at 06:00 and 22:00) and a low concentration in the afternoon (11:00-16:00). According to the value of toluene/benzene (T/B) and isopentane/n-pentane, the atmosphere of the industrial area was mainly affected by vehicle exhaust emissions, solvent use, combustion sources, and LPG/NG. The total AFP of VOCs was up to 41.43×10-2 µg·m-3, and aromatics were the largest contributor. The total OFP of VOCs reached 117.59 µg·m-3, in which the alkenes contributed the most.

5.
Huan Jing Ke Xue ; 44(3): 1328-1335, 2023 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-36922194

ABSTRACT

The semi-/intermediate volatile organic compound (S/IVOCs) emissions inventory of Jiangsu province was established in 2019 using the activity data of various S/IVOCs emission sources, emission factors, and an estimation method. S/IVOCs emissions for each source and city in Jiangsu province were analyzed. The total amount of S/IVOCs emissions in Jiangsu province in 2019 was 637.31 Gg. Industrial sources were the major source of total S/IVOCs emissions accounting for 63.42% (404.20 Gg), followed by residential on-road mobile sources (22.23%), and off-road mobile sources accounted for the least (0.06%). Suzhou had the highest S/IVOCs emissions in 2019, accounting for 25.40% (161.86 Gg) of the total S/IVOCs emissions in Jiangsu province. The S/IVOCs emission intensity per unit area in Suzhou was the highest, reaching 18.70 t·km-2, and the emission intensity per unit GDP was the highest in Lianyungang (22.45 t·100 million yuan-1). The spatial distribution map revealed that S/IVOCs emissions in southern Jiangsu were relatively higher. The difference in the total emission of S/IVOCs, emission intensity per unit area, and emission intensity per unit of GDP were quite different among cities. The uncertainty range of S/IVOCs emissions was -88.46%-224.38% in Jiangsu province in 2019. The uncertainty range of biomass burning sources was the largest (-96.40%-277.17%).

6.
Environ Pollut ; 316(Pt 1): 120501, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36283470

ABSTRACT

Ground-based observational characterization of atmosphere aerosols over Central Asia is very limited. This study investigated the columnar aerosol characteristics over Issyk-Kul, Kyrgyzstan, a background site in Central Asia using the long-term (∼14 years: August 2007-November 2021) data acquired with the Cimel sunphotometer. The mean aerosol optical depth (AOD) and Ångström exponent (AE) during the observation period were 0.14 ± 0.10 and 1.19 ± 0.41, respectively. Both AOD and AE varied across seasons, with highest AOD in spring (0.17 ± 0.17). Regarding the aerosol types, clean continental aerosols were dominant type (65%), followed by mixed aerosols (∼19%), clean marine aerosols (∼14%), dust (0.8%), and urban/industrial and biomass burning aerosol (0.7%). The aerosol volume size distribution was bimodal indicating the influence of both anthropogenic and natural aerosols with clear dominance of coarse mode during the spring season. Mainly dust and mixed aerosols were present during high aerosol episodes while the coarse mode aerosol volume concentration was 7.5 (strong episodes) and ∼19 (extreme episodes) times higher than the whole period average. Aerosol over this background sites were from local and regional sources with some contribution of long-range transport.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Environmental Monitoring , Aerosols/analysis , Dust/analysis , Asia
7.
Article in English | MEDLINE | ID: mdl-35954964

ABSTRACT

Low-visibility events (LVEs) are severe weather phenomena that are closely linked with anthropogenic pollution, which negatively affects traffic, air quality, human health, and the environment. This study conducted a two-month (from October to December 2019) continuous measurement campaign on Chongming Island in Shanghai to characterize the LVEs transition and its drivers. The LVEs accounted for 38% of the time during the campaign, of which mist accounted for 14%, fog-haze for 13%, haze for 6%, and fog for 5%. The fog and mist mainly occurred from midnight to early morning, while haze mostly occurred during the daytime. Different LVEs were interdependent and transitioned from one to another. Fog generally turned into haze after sunrise, while haze turned into fog after sunset. Their formation and evolution were caused by the combined impacts of meteorological conditions and aerosol particles. It was found that temperature difference was the dominant meteorological factor driving the evolution of LVEs. Within the short term, cooling led to a greater increase in relative humidity than humidification. Radiative cooling during the night promoted the formation of fog and mist. During fog and mist events, cloud condensation nuclei (CCN) were mainly internally mixed due to the impact of fog droplet removal and aqueous/heterogeneous aerosol reactions occurring under high humidity. Increased CCN concentration appeared to increase the fog droplet number and liquid water content in fog events. Overall, conditions of high humidity and high particle loading were conducive to LVEs, whereas conditions of sufficient water vapor at a low particle level and sufficient particles at a low humidity level also caused LVEs. This study provided insights into LVEs classification, evolution scheme, and aerosol roles from a micro point of view. The findings could be useful for improving forecasts of local radiative fog and other LVEs.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring , Humans , Particulate Matter/analysis , Rivers
8.
Huan Jing Ke Xue ; 43(7): 3416-3422, 2022 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-35791527

ABSTRACT

Based on atmospheric precipitation collected in the northern suburbs of Nanjing from 2019 to 2020, the pH, conductivity, and chemical components of precipitation were analyzed. The seasonal variation in pH and conductivity of atmospheric precipitation in the northern suburbs of Nanjing were studied. The pollution levels and deposition characteristics of water-soluble inorganic nitrogen (WSIN) and organic nitrogen (WSON) in precipitation were also analyzed. The frequency of acid rain (pH<5.6) in atmospheric precipitation in the northern suburbs of Nanjing reached 37.18% during the observation period. Precipitation acidification was more serious in autumn and winter, and the pH value showed a variation trend of spring>summer>autumn>winter. The average conductivity of precipitation was 29.49 µS·cm-1; high pH and conductivity in spring were related to the high dust content in the atmosphere. The seasonal difference between WSIN and WSON in precipitation was significant. The highest and lowest concentrations of NO3--N and NH4+-N appeared in spring and summer, respectively. The concentration of WSON was the highest in autumn (2.63 mg·L-1). The average concentration ratio of WSON to water-soluble total nitrogen (WSTN) in precipitation was approximately 0.47, indicating that WSON played an important role in the study of total nitrogen. The average wet deposition fluxes of WSIN and WSON were 12.10 kg·(hm2·a)-1 and 11.13 kg·(hm2·a)-1, respectively, in which the inorganic nitrogen deposition was mainly NH4+-N.


Subject(s)
Nitrogen , Water , Atmosphere , Climate , Seasons
9.
Huan Jing Ke Xue ; 43(6): 2888-2894, 2022 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-35686758

ABSTRACT

The seasonal variation characteristics of water-soluble organic nitrogen (WSON) in PM2.5 were analyzed in the Nanjing Jiangbei new area. The relationship between WSON and water-soluble inorganic nitrogen (WSIN) was also discussed. The results showed that the variation range of WSON in PM2.5 was 0.446 to 4.200 µg·m-3, with an average value of 2.04 µg·m-3. This value was slightly higher than the observed results in Beijing, Shanghai, and Changzhou. The average value of WSON was the highest in autumn[(2.967±0.643) µg·m-3], which was approximately 1.7 times that of the other three seasons. The average contribution ratio of WSON to water-soluble total nitrogen (WSTN) in fine particles of Nanjing accounted for 25%, with high ratios in summer-autumn and low ratios in winter-spring. For example, the proportion of WSON/WSTN in winter was only approximately 50% of that in summer and autumn. WSON had the highest correlation with NO2--N and the lowest correlation with NO3--N in WSIN, which may be related to the volatilization of NO3--N caused by high temperatures in summer. Principal component analysis (PCA) showed that WSON of PM2.5 in Nanjing was mainly derived from secondary transformation, sea salt, dust, and biomass combustion.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring , Nitrogen , Particulate Matter/analysis , Seasons , Water
10.
Huan Jing Ke Xue ; 42(11): 5201-5209, 2021 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-34708959

ABSTRACT

Ambient volatile organic compounds(VOCs) were determined by GC 5000 online gas chromatography in three functional areas of Shenyang, namely industrial, traffic, and mixed cultural and educational areas. The pollution characteristics of VOCs in these functional areas during the heating and non-heating periods were analyzed, and the ozone formation potential(OFP) was estimated by using maximum incremental reactivity(MIR). The results show that the average mass concentration of VOCs is(82.19±54.99) µg·m-3 in Shenyang, of which the concentration in industrial areas is significantly higher than that in traffic and cultural and educational mixed areas, and the heating period is higher. The traffic and mixed cultural and educational areas have bi-modal characteristics due to the morning and evening traffic, and the industrial area has multiple peaks affected by the irregular operation hours. The proportion of VOCs in traffic and mixed cultural and educational areas shows the order of alkanes>aromatic hydrocarbons>alkenes>alkynes, but the proportion of alkynes in industrial areas is higher than that of alkenes. The benzene to toluene(B/T) and ethane to acetylene(E/A) ratios reflects that traffic and mixed cultural and educational areas were affected by both vehicle exhaust emissions and fuel combustion. The industrial zone is therefore affected by complex sources, and there are more aged air masses during the heating period than non-heating period. The average OFP contribution of atmospheric VOCs in Shenyang is 232.89 µg·m-3. The contribution of alkenes is largest for all functional areas, and the aromatic component also contributes more due to the high concentration of industrial areas.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring , Ozone/analysis , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
11.
Huan Jing Ke Xue ; 42(1): 30-37, 2021 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-33372454

ABSTRACT

In order to explore the characteristics of PM2.5 and water-soluble ions in Shenyang in winter, the URG-9000D online monitoring system was used to continuously sample PM2.5 and gas components during 2018. The results indicated that the average concentration of PM2.5 in Shenyang during the sampling period was 80.67 µg·m-3, and the total water-soluble ion concentration ranged from 2.68 to 132.79 µg·m-3. Compared with clean days, the proportion of NO3-, SO42-, and NH4+ (SNA) in polluted days increased significantly, reached 43.7% of PM2.5. The rapid accumulation of SO2 in a short period of time made atmospheric PM2.5 explosively increase in Shenyang in winter. A Pearson correlation analysis showed that the correlation coefficients of SNA, Cl-, and PM2.5 were all above 0.78, indicating that the main contribution components of winter PM2.5 in Shenyang were SNA and Cl-. The apportionment of PMF sources indicated that the sources of pollutants in winter in Shenyang mainly included secondary reaction sources, coal and biomass combustion sources, and dust sources.

12.
Huan Jing Ke Xue ; 41(11): 4803-4812, 2020 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-33124224

ABSTRACT

In order to explore the pollution characteristics of the chemical components of atmospheric particulate matter in Nanjing Jiangbei New Area, size-resolved samples were collected from 2013 to 2014. The size distribution and seasonal variation of the chemical components of the particles were studied. The results showed that the total concentration of nine water-soluble ions in fine particles was higher in autumn and winter than in spring and summer, while the concentration of coarse particles was highest in winter. The ratio of NO3-/SO42- for the fine particles in winter was slightly higher than in the other three seasons, and lowest in the coarse particles. The trend of particle size distribution in spring, summer and autumn was consistent. The distribution of water-soluble ions was bimodal, and NO3- peaked at 0.65-1.1 µm in all four seasons. The peak radius of SO42- in the fine particles in summer and autumn was 0.43-0.65 µm, and the peak value in winter moved towards the coarser particles, while Na+ and Cl- mainly existed in the coarse particles. The charge equivalent of anion and anion indicated that the coarse and fine particles were alkaline and weakly alkaline, respectively. Organic carbon (OC) and elemental carbon (EC) mainly existed in the fine particles, with a bimodal distribution. The secondary organic carbon (SOC) in the fine particles in autumn and winter was significantly higher than in spring and summer. The ratio method further indicated that the carbonaceous component of the particulate matter in Nanjing Jiangbei New Area is mainly from the emissions of coal and biomass combustion, and vehicle exhaust.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , China , Coal , Environmental Monitoring , Particle Size , Particulate Matter/analysis , Seasons
13.
Huan Jing Ke Xue ; 41(9): 3976-3984, 2020 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-33124277

ABSTRACT

The ammonia emissions inventory of Zhejiang Province was established in 2017 using the activity data of various ammonia emission sources, emission factors, and an estimation method. Ammonia emissions for each source and city in Zhejiang Province were analyzed. The spatial distribution and intensity of ammonia emissions in 2017 were mapped using ArcGIS software. The total anthropogenic ammonia emissions in Zhejiang Province in 2017 were 122.00 kt. The farmland ecosystem was the major source of total ammonia emissions (36.06 kt), and nitrogen fertilizer applications was the largest contributor in this category (87.12%), followed by the livestock and poultry source (29.44%). The waste and human-activity sources were the two major non-agricultural sources, accounting for 44.07% and 28.49%, respectively. Hangzhou City had the highest ammonia emissions in 2017, accounting for 17.83% of the total ammonia emissions in Zhejiang Province. However, the ammonia emission intensity in Jiaxing City was the highest, reaching 3.82 t ·km-2. The spatial distribution map revealed that ammonia emissions in the northern and southeastern Zhejiang were relatively higher, while ammonia emission intensity was higher in the northern and northeastern region.


Subject(s)
Air Pollutants , Ammonia , Air Pollutants/analysis , Ammonia/analysis , Animals , Cities , Ecosystem , Environmental Monitoring , Humans
14.
Huan Jing Ke Xue ; 41(2): 529-536, 2020 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-32608712

ABSTRACT

To gain a better understanding of the day-night variation characteristics of water-soluble ions, PM2.5 samples were continuously collected for two months in the Nanjing Jiangbei New Area during winter. The diurnal variation and sources of water-soluble ions were studied. Results showed that the mass concentration of water-soluble ions ranged from 17.07 µg·m-3 to 168.43 µg·m-3 with a mean value of (59.01±30.75) µg·m-3. The average mass concentration of water-soluble ions in daytime was higher than that in the nighttime. The concentration ratio of NO3- and NH4+ to total ion concentrations was higher at night, while SO42- and Cl- were higher during daytime. SO42-, NO3-, and NH4+ (SNA) were the dominant species of water-soluble ions in PM2.5 in Nanjing. The mass concentration of SNA on polluted days was higher than that on clean days. The ratio of the anion-cation balance (AE/CE) was larger than 1, indicating that the PM2.5 was acidic. There was a significant linear correlation between NH4+ with NO3- and SO42-, indicating that it occurred mainly in the form of NH4NO3 and (NH4)2SO4 in PM2.5. The PMF source apportionment indicated that water-soluble ions of PM2.5 were mainly derived from motor vehicle emissions, fossil fuel combustion, biomass burning, and dust in the Nanjing Jiangbei New Area.

15.
Huan Jing Ke Xue ; 41(2): 600-608, 2020 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-32608718

ABSTRACT

The temporal variation and spatial distribution characteristics of aerosol optical depth (AOD), aerosol column mass concentration (AMC), and fine mode fraction (FMF) were analyzed based on the aerosol product information obtained from MODIS/Terra C6.1 from 2001 to 2018 in the Henan province. The spatial distribution of AOD and AMC in all seasons are high in the east and low in the west, and high in the north and low in the south, which was related to the special topography, population distribution, and number of enterprises in each region. Meanwhile, the spatial distribution of FMF is opposite to that of AOD and AMC. In spring, AMC was the highest, while FMF was the lowest, indicating that it was mainly affected by dust aerosol in spring. AOD and FMF were the highest in summer, while the AMC was lower, mainly because the high values of AOD in summer were caused by the hygroscopic growth of aerosol. The increase of rainwater scouring and secondary aerosol generation led to the domination of fine-mode aerosols in summer. In autumn and winter, the AOD and AMC were relatively low, and the FMF was slightly higher than in spring. The AOD and AMC in the Henan Province showed a decreasing annual trend, while the FMF exhibited an increasing trend. The average monthly peak-valley difference of AOD, AMC, and FMF decreased after 2011.

16.
Huan Jing Ke Xue ; 41(2): 647-655, 2020 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-32608723

ABSTRACT

Chemical and deposition characteristics as well as potential sources of precipitation in Xi'an from 2000 to 2017 were analyzed based on the acid deposition monitoring network in East Asia (EANET). The pH of precipitation showed increasing trends, whereas the conductivity of precipitation showed decreasing trends between 2000 and 2017 in Xi'an. The decreasing order of ion concentration in precipitation was as follows:SO42- > Ca2+ > NH4+ > NO3- > Na+ > Cl- > Mg2+ > K+. The percentage of SO42- in the total ion concentration decreased from 38.6% in 2000 to 27.9% in 2017. The ratio of SO42- to NO3- in recent years indicated that the type of pollutant in Xi'an changed from the coal-burning type to the mixed type. The deposition of SO42- in precipitation had a declining trend, which was consistent with the results of the Mann-Kendall test. Nitrogen and sulphur depositions in precipitation were 16.89 kg·(hm2·a)-1 and 33.52 kg·(hm2·a)-1, respectively, and ammonium nitrogen (NH4+-N) was the main deposition component of atmospheric active nitrogen in the precipitation of Xi'an. Vehicle emissions were the major contributors to SO42- (15.43%) and NO3- (72.99%). NH4+ originated mainly from agriculture sources, and the percentage reached up to 75.47%.

17.
Chemosphere ; 251: 126342, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32169712

ABSTRACT

The Yangtze River Delta (YRD) is one of the regions with air pollution and high ammonia (NH3) emission in China. A high-resolution ammonia emission inventory for the YRD region was developed based on the updated source-specific emission factor (EFs) and the county-level activity data. The 1 × 1 km gridded emissions were allocated by using the appropriate spatial surrogate. The total NH3 emissions changed insignificantly from 2006 to 2014 and varied in the range of 981.65 kt - 1014.30 kt. The fertilizer application and livestock were the major contributors of total emission. Humans, biomass burning and vehicles were the top three contributors of non-agricultural sources, accounting for 37.24%, 31.02% and 10.85%, respectively. Vehicles were calculated to be the non-agricultural source with the fastest annual growth rate. NH3 emissions from the nitrogen fertilizer application generally peaked in summer, corresponding to the planting schedule and relatively high temperature. High NH3 emissions occurred in the north as opposed to low emissions in the south of the YRD. The cities of Xuzhou, Yancheng and Nantong with more agricultural activities were demonstrated to have relatively high NH3 emissions, contributing 10.0%, 9.0 and 7.1% of total emissions, respectively. The validity of the emission estimates was further evaluated based on the uncertainty analysis by Monte Carlo simulation, comparison with previous studies, and correlation analysis between NH3 emission density and observed ground NH3 concentration. A detailed NH3 emission inventory is the basis of regional-scale air quality model simulation and can provide valuable information for understanding the formation mechanism of pollutants.


Subject(s)
Air Pollutants/analysis , Ammonia/analysis , Environmental Monitoring , Agriculture , Air Pollution/analysis , Animals , China , Cities , Fertilizers/analysis , Humans , Livestock , Nitrogen/analysis , Rivers , Seasons
18.
Exp Ther Med ; 18(6): 4888-4892, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31798712

ABSTRACT

Temporomandibular joint (TMJ) ankylosis in pediatric patients is rare and may cause severe micrognathia and obstructive sleep apnea syndrome. The present study reports on the treatment and 4-year follow-up of a pediatric patient with early-onset bilateral TMJ ankylosis and severe secondary micrognathia, as well as obstructive sleep apnea syndrome. A typical 'bird face' appearance was noted with severe mandible retrognathism and a significant convex facial profile. The treatment of this patient involved TMJ ankylosis release with condylectomy and simultaneous bilateral mandibular distraction osteogenesis, which enabled the surgeons to simultaneously reconstruct the neocondyle and correct facial malformations. Following treatment, the micrognathia was corrected and the oropharyngeal airway was significantly expanded. However, the maximal incisal opening was limited. During the 4-year follow-up, no signs of mandible retraction were noted and mouth opening increased to 17 mm (passive) compared with the inability to open that was noted immediately following surgery. A certain degree of MIO shrinkage was identified in the patient. In such cases of TMJ ankylosis, early post-operative exercise, active post-operative physiotherapy and stringent follow-up are essential to prevent post-operative shrinkage and adhesions.

19.
Huan Jing Ke Xue ; 40(11): 4862-4869, 2019 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-31854552

ABSTRACT

According to activity level data of various ammonia emission sources in Jiangsu Province, using a reasonable inventory calculation method and emission factor, an ammonia emission inventory in Jiangsu Province from 2013 to 2017 was established, and the trend of anthropogenic ammonia emissions over these years was analyzed. The distribution characteristics of anthropogenic ammonia emissions and emission intensity in Jiangsu Province were analyzed using ArcGIS software. The results showed that the ammonia emissions in Jiangsu Province decreased from 624.84 kt in 2013 to 562.47 kt in 2017 with an average annual rate of decline of approximately 2.6%. Agricultural has always been the most important source of ammonia emissions in Jiangsu Province and accounted for 82.4% of the total ammonia emissions in 2017. Laying hens are the largest source of ammonia emissions from livestock and poultry sources, accounting for 49.3% of the ammonia emissions from livestock and poultry. The average ammonia emission intensity in Jiangsu Province was 5.3 t·km-2 in 2017. Yancheng and Xuzhou are two cities with the largest anthropogenic ammonia emissions and emission intensity in Jiangsu Province. Zhenjiang City has the lowest ammonia emission and emission intensity.

20.
Huan Jing Ke Xue ; 40(6): 2546-2555, 2019 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-31854645

ABSTRACT

The hygroscopicity of aerosols has an important influence on atmospheric visibility and is one of the main causes of haze pollution. Based on observations of the aerosol hygroscopic growth factor (GF), water soluble inorganic ions, and organic carbon/elemental carbon (OC/EC) data during haze weather from April 17 to May 21, in 2014, the hygroscopic properties of aerosols and corresponding effects on haze in Nanjing were analyzed. The results showed that the distribution of GF was bimodal and varied from 1.12 to 1.64. With the increase of particle size, the average hygroscopic growth factor (GFmean) changed less and the standard deviation of wettability (σ) increased gradually; meanwhile, the degree of external mixing of chemical components increased gradually. The hygroscopicity of aerosol particles in the day was better than that at night, but the mixing degree was weaker than that at night; in non-haze weather, the hygroscopicity of aerosol particles was stronger and the degree of external mixing was higher, while the hygroscopicity and mixing degree of haze particles showed opposite trends. With the increase of haze levels, the hygroscopicity of aerosol particles grew weaker and the degree of external mixing decreased further. Relative humidity can have a significant impact on the chemical components of aerosols and their hygroscopic capacity. Under a low humidity background, the main chemical components of aerosols included NH4+, NO3-, SO42-, OC, and EC, and the content of OC/EC in aerosols during haze days was more abundant; in haze weather with low relative humidity, abundant organic matter was the main reason for the decrease of the moisture absorption capacity of small-scale aerosols. The level of relative humidity in the haze weather was also an important factor affecting the hygroscopic capacity of aerosols. The contents of (NH4)2SO4, OC, and insoluble substances in aerosols were the highest, followed by NH4NO3. The contents of these chemical components showed obvious diurnal variation characteristics, which resulted in significant diurnal variation of the hygroscopicity of the aerosols. κchem calculated by the chemical composition and κmean acquired by observations using H-TDMA showed good consistency, and the correlation coefficient was 0.8903. In haze weather, the correlation between them was further enhanced. Therefore, the major chemical components of aerosols could be used to predict the hygroscopic properties of aerosols.

SELECTION OF CITATIONS
SEARCH DETAIL
...